

Computer Vision Course Syllabus

1	Course title	Computer Vision		
1		L		
2	Course number	1905322		
3	Credit hours	3		
3	Contact hours (theory, practical)	3		
4	Prerequisites	Machine Learning and Neural Networks (1915370)		
5	Program title	Artificial Intelligence		
6	Program code	05		
7	Awarding institution	The University of Jordan		
8	School	King Abdullah II School for Information Technology		
9	Department	Artificial Intelligence		
10	Level of course	Undergraduate (UG)		
11	Year of study and semester (s)	2023 - Autumn (1 st)		
12	Final Qualification	BSc		
13	Other department(s) involved in teaching the course	None		
14	Language of Instruction	English		
15	Teaching methodology	⊠Face-to-Face □Blended □Online		
16	Electronic platform(s)	☑Moodle ☑Microsoft Teams □Skype □Zoom☑Others http://omar.alkadi.net/		
17	Date of production/revision	8 October 2023		

18 Course Coordinator:

Name: Prof. Omar Al-Kadi Office number: 308 Phone number: 22623 Email: <u>o.alkadi@ju.edu.jo</u>

19 Other instructions:

- **Textbook:** Computer Vision: Algorithms and Applications, 2nd edition can be downloaded from <u>here</u>.
- **Programming environment:** MATLAB MathWorks[®] (<u>R2023 Release</u>)

20 Course Description:

This course explores how computers understand the visual world, emphasizing probabilistic, statistical, and data-driven approaches in computer vision. Covering image processing, segmentation, grouping, recognition, and motion estimation, it aims to automate tasks analogous to the human visual system. The curriculum progresses from basic image processing to advanced topics like multiple view geometry, focusing on machine learning methods, particularly in supervised learning and classification. The learned algorithms have broad applications beyond vision problems, making them valuable tools for diverse challenges.

21 Course aims and outcomes:

A- Aims:

On completion of this course, students should be able to:

- Understanding image formation and filtering, including linear filters and gradient analysis for enhanced visual understanding.
- Develop advanced skills in feature detection and matching, covering texture analysis, optical flow, Hough transform, RANSAC with robust fitting, active contours, segmentation, and local invariant features.
- Understand multiple views and motion in computer vision through techniques like structure from motion, stereo vision, and integration of machine and deep learning for improved object detection.
- Explore the intersection of machine learning with computer vision, focusing on supervised learning and classification, and understand their versatility in solving a broad range of challenges.

B- Intend	ded \ Students Learning Outcomes (ILOs \ SOs):
Label	ABET Student Learning Outcomes (SOs)

	\mathbf{O}
SO1	Analyze a complex computing problem and to apply principles of computing and other
	relevant disciplines to identify solutions.
SO2	Design, implement, and evaluate a computing-based solution to meet a given set of
	computing requirements in the context of the program's discipline.
SO5	Function effectively as a member or leader of a team engaged in activities appropriate to
	the program's discipline.

On successfully completing the module, the students are expected to have gained good knowledge of:

Descriptor	Label	Course Intended Learning Outcomes Description (ILOs)		
Vl-l	Δ	Understanding image formation and filtering techniques for enhanced visual understanding. [SO1]		
Knowledge	C	Inderstand complexities of multiple views and motion in computer vision, acorporating structure from motion and stereo vision. [SO2]		
	I K	Develop proficiency in feature detection and matching, including texture analys and optical flow. [SO1]		
Skills		Explore the synergy between machine learning and computer vision, focusing o supervised learning and classification. [SO2]		
	I H	Apply theoretical understanding to real-world problem-solving, utilizing algorithms across diverse domains. [SO2]		

QF-AQAC-03.02.1.3

		Gain practical skills in object detection through robust techniques and deep learning integration. [SO1]
Competencies	G	Demonstrate how to solve real-world problems in MATLAB programming language. [SO2]
Competencies -	Н	Demonstrate teamwork and communication skills through group work activities. [SO5]

22 Topic Outline and Schedule:

Г

Week	Lecture	Торіс	ILO/SO	Evaluation Methods	References
Week		торіс	110/50		Moodle
1	1.1	Introduction to			(http://elearning.ju.
	1.2			Class discussions and	edu.jo) and subject
			A/SO1		webpage
	1.3	Computer Vision		participation	(http://omar.alkadi.
					net/2030-2)
	2.1				Moodle
			A/SO1		(http://elearning.ju.
	2.2	Image Formation:		Class discussions and	edu.jo) and subject
2		cameras and optics,		participation	webpage
	2.3	light and color.		participation	(http://omar.alkadi.
					net/2030-2)
	3.1				Moodle
	3.2				(http://elearning.ju.
2	3.2	Image Filtering:	C,G/SO2	Assignment 1	edu.jo) and subject
3		spatial and frequency domain filtering.			webpage
	3.3				(http://omar.alkadi.
					net/2030-2)
	4.1				Moodle
	4.2	T T11/	C,G/SO2	Programming task 1	(http://elearning.ju.
4	4.2	Image Filtering: image pyramids and applications.			edu.jo) and subject
4	4.3				webpage
					(http://omar.alkadi.
					net/2030-2)
	5.1				Moodle
	5.2	Feature Detection	C,G/SO2	Class discussions and participation	(http://elearning.ju.
5		and Matching: gradient and edges, points and corners.			edu.jo) and subject
5	5.3				webpage
					(http://omar.alkadi.
					net/2030-2)
	6.1			Programming task 2	Moodle
6	6.2	Feature Detection			(http://elearning.ju.
		and Matching: local	C/SO2		edu.jo) and subject
	6.3	image features, texture	0.002		webpage
		analysis.			(http://omar.alkadi.
					net/2030-2)
	7.1	Feature Detection		Class discussions and participation	Moodle
7	7.2	and Matching:	D,G/SO2		(http://elearning.ju.
,	7.3	feature matching and			edu.jo) and subject
	1.5	Hough transform.			webpage

					(http://omar.alkadi. net/2030-2)
	8.1				Moodle
	8.2	Feature Detection	D,G/SO2		(http://elearning.ju.
8	8.3	and Matching: model fitting and RANSAC.		Assignment 2	edu.jo) and subject webpage (http://omar.alkadi. net/2030-2)
	9.1				Moodle
	9.2	Multiple Views and	B/SO1	Class discussions and participation	(http://elearning.ju.
9	9.3	Motion: Stereo vision, epipolar geometry and structure from motion.			edu.jo) and subject webpage (http://omar.alkadi. net/2030-2)
	10.1				Moodle
	10.2	Multiple Views and	B,G/SO2	Class discussions and	(http://elearning.ju.
10	10.3	Motion: feature tracking and optical flow.		participation	edu.jo) and subject webpage (http://omar.alkadi. net/2030-2)
	11.1	Machine Learning: clustering and classification.	D/SO1		Moodle
	11.2			Programming task 3	(http://elearning.ju.
11	11.3				edu.jo) and subject webpage (http://omar.alkadi. net/2030-2)
	12.1				Moodle
	12.2	Deep learning Basics: clustering and classification.	D/SO1	Class discussions and participation	(http://elearning.ju.
12	12.3				edu.jo) and subject webpage (http://omar.alkadi. net/2030-2)
	13.1		F,G/SO2	Programming task 4	Moodle
	13.2	Object Detection: bag			(http://elearning.ju.
13	13.3	of features, sliding window detection, scene recognition.			edu.jo) and subject webpage (http://omar.alkadi. net/2030-2)
	14.1	Object Detection:			Moodle
14	14.2	Semantic Segmentation		Class discussions and	(http://elearning.ju.
	14.3	Segmentation, Instance Segmentation, 3D Understanding	F/SO2	participation	edu.jo) and subject webpage (http://omar.alkadi. net/2030-2)
	15.1				
15	15.2	Course wrap-up and	H/SO5	Final project	
	15.3	project presentations		submission	-

Opportunities to demonstrate achievement of the ILOs are provided through the following assessment methods and requirements:

Evaluation Activity	Mark	Topic(s)	Period (Week)	Platform
· · ·		Image Enhancement,		Moodle
Programming task 1	4 marks	Spatial and Frequency	Week 3	(JUExams
		Filtering		platform)
				Moodle
First assignment	2 marks		Week 2 and 4	(elearning
				platform)
		Pyramids, Template		Moodle
Programming task 2	4 marks	Matching, Edge and	Week 6	(JUExams
		Corner Detection, Filter		platform)
		Banks		•
				Moodle
Midterm exam	30 marks		Week 7	(JUExams
				platform)
				Moodle
Assignment 2	2 marks		Week 6 and 8	(elearning
				platform)
D 10		RANSAC and Hough transform	XXX 1 1 1	Moodle
Programming task 3	4 marks		Week 11	(JUExams
				platform)
		Stereo Vision, Epipolar		Moodle
Programming task 4	4 marks	Geometry and Structure	Week 13	(JUExams
		from Motion		platform)
Project Submission	16 marks		Week 15	In-class

24 Course Requirements (e.g: students should have a computer, internet connection, webcam, account on a specific software/platform...etc):

PC/laptop, MATLAB – Mathworks[®].

25 Course Policies:

A- Attendance policies: Students are responsible for attending online lectures and downloading and viewing all material covered uploaded to the LMS (<u>http://elearning.ju.edu.jo</u>) and the subject webpage at (<u>http://omar.alkadi.net/2030-2</u>).

B- Absences from exams and submitting assignments on time: It is the students' responsibility to turn in their homework assignments to their instructors by the announced due date/time. Not attending exams without a valid excuse is not accepted.

C- Health and safety procedures: Students should adhere to the University of Jordan health and safety rules and procedures

D- Honesty policy regarding cheating, plagiarism, misbehavior: For more details on University regulations please visit <u>http://www.ju.edu.jo/rules/index.htm</u>

E- Grading policy: 50% semester work comprising of assignments, quizzes and programming project to be submitted at the end of the semester, and 50% for final exam.

F- Available university services that support achievement in the course: <u>http://elearning.ju.edu.jo</u>

26 References:

A- Required books, assigned reading and audio-visuals:

• Computer vision: algorithms and applications. By Szeliski, R. (Springer Nature, 2022)

B- Recommended books, materials and media:

- Computer vision: a modern approach, by Forsyth, D. A., & Ponce, J. (Prentice Hall, 2002).
- Digital Image Processing, by Gonzalez, Rafael, Woods, Richard (Prentice Hall, 2018).
- Computer Vision, by Linda G. Shapiro and George C. Stockman
- Introductory Techniques for 3-D Computer Vision, by Emanuele Trucco & Alessandro Verri
- Multiple View Geometry in Computer Vision, by Richard Hartley and Andrew Zisserman
- Deep Learning, by Ian Goodfellow, Yoshua Bengio and Aaron Courville

27 Additional information:

For additional information, student can refer to the lecturers' website at http://omar.alkadi.net/teaching